Peculiar scaling of self-avoiding walk contacts.

نویسندگان

  • M Baiesi
  • E Orlandini
  • A L Stella
چکیده

The nearest neighbor contacts between the two halves of an N-site lattice self-avoiding walk offer an unusual example of scaling random geometry: for N-->infinity they are strictly finite in number but their radius of gyration R(c) is power law distributed proportional to R(-tau)(c), where tau>1 is a novel exponent characterizing universal behavior. A continuum of diverging length scales is associated with the R(c) distribution. A possibly superuniversal tau = 2 is also expected for the contacts of a self-avoiding or random walk with a confining wall.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the corrections-to-scaling for the number of nearest neighbour contacts in self-avoiding walks

Recently, an exhaustive study has been made of the corrections-to-scaling for the number of, and various size measures (eg. radius of gyration) of, self-avoiding walks on the various two-dimensional lattices. This study gave compelling evidence that the first non-analytic correction-to-scaling has exponent Δ1 = 3/2. However, there also exist predictions in the literature for the corrections-to-...

متن کامل

Critical Behaviour of Self-avoiding Walk in Five or More Dimensions

We use the lace expansion to prove that in five or more dimensions the standard self-avoiding walk on the hypercubic (integer) lattice behaves in many respects like the simple random walk. In particular, it is shown that the leading asymptotic behaviour of the number of «-step self-avoiding walks is purely exponential, that the mean square displacement is asymptotically linear in the number of ...

متن کامل

On the scaling limit of planar self - avoiding walk

A planar self-avoiding walk (SAW) is a nearest neighbor random walk path in the square lattice with no self-intersection. A planar self-avoiding polygon (SAP) is a loop with no self-intersection. In this paper we present conjectures for the scaling limit of the uniform measures on these objects. The conjectures are based on recent results on the stochastic Loewner evolution and nondisconnecting...

متن کامل

Long-range self-avoiding walk converges to α-stable processes

Abstract: We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to Brownian motion for α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade (1988), who proves convergence to Brownian motion for nearest-neighb...

متن کامل

Scaling of self-avoiding walks in high dimensions

We examine self-avoiding walks in dimensions 4 to 8 using high-precision Monte Carlo simulations up to length N = 16 384, providing the first such results in dimensions d > 4 on which we concentrate our analysis. We analyse the scaling behaviour of the partition function and the statistics of nearest-neighbour contacts, as well as the average geometric size of the walks, and compare our results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 87 7  شماره 

صفحات  -

تاریخ انتشار 2001